> > Abelian groups, module theory, and topology: proceedings in by Dikran Dikranjan, Luigi Salce

# Abelian groups, module theory, and topology: proceedings in by Dikran Dikranjan, Luigi Salce

By Dikran Dikranjan, Luigi Salce

Encompasses a stimulating choice of papers on abelian teams, commutative and noncommutative jewelry and their modules, and topological teams. Investigates presently well known issues corresponding to Butler teams and nearly thoroughly decomposable teams.

Similar geometry and topology books

Grassmannians and Gauss Maps in Piecewise-Linear and Piecewise-Differential Topology

The e-book explores the opportunity of extending the notions of "Grassmannian" and "Gauss map" to the PL type. they're unusual from "classifying house" and "classifying map" that are primarily homotopy-theoretic notions. The analogs of Grassmannian and Gauss map outlined comprise geometric and combinatorial details.

Additional info for Abelian groups, module theory, and topology: proceedings in honor of Adalberto Orsatti's 60th birthday

Sample text

Rodrigues-type formula. ω(x; a, b, c, d)pn (x; a, b, c, d) = (−1)n n! δ δx n ω(x; a + 12 n, b + 12 n, c + 12 n, d + 12 n) . 10) Generating functions. ∞ 1 F1 a + ix − it a+c 1 F1 d − ix it b+d = 1 F1 a + ix − it a+d 1 F1 c − ix it b+c = (1 − t)1−a−b−c−d 3 F2 1 2 (a pn (x; a, b, c, d) n t . 11) ∞ pn (x; a, b, c, d) n t . 12) + b + c + d − 1), 12 (a + b + c + d), a + ix 4t − a + c, a + d (1 − t)2 ∞ = (a + b + c + d − 1)n p (x; a, b, c, d)tn . n n (a + c) (a + d) i n n n=0 References. [41], [43], [67], [68], [76], [205], [260], [274], [299], [301], [303].

X or equivalently d −x α−1 (α−1) e−x xα L(α) x Ln+1 (x). n (x) = (n + 1)e dx Rodrigues-type formula. e−x xα L(α) n (x) = 1 n! 8) n d dx e−x xn+α . 9) Generating functions. (1 − t)−α−1 exp et 0 F1 (1 − t)−γ 1 F1 − − xt α+1 γ xt α+1 t−1 ∞ xt t−1 n L(α) n (x)t . 10) n=0 ∞ (α) Ln (x) n t . 11) (γ)n n L(α) n (x)t , γ arbitrary. 12) = ∞ = Remarks. 1) of the Laguerre polynomials can also be written as : Ln(α) (x) = 1 n! n k=0 (−n)k (α + k + 1)n−k xk . k! In this way the Laguerre polynomials can be defined for all α.

3 Continuous dual Hahn Definition. Sn (x2 ; a, b, c) = 3 F2 (a + b)n (a + c)n −n, a + ix, a − ix 1 . 1) Orthogonality. If a,b and c are positive except possibly for a pair of complex conjugates with positive real parts, then ∞ 1 2π Γ(a + ix)Γ(b + ix)Γ(c + ix) Γ(2ix) 2 Sm (x2 ; a, b, c)Sn (x2 ; a, b, c)dx 0 = Γ(n + a + b)Γ(n + a + c)Γ(n + b + c)n! δmn . 2) If a < 0 and a + b, a + c are positive or a pair of complex conjugates with positive real parts, then ∞ 1 2π Γ(a + ix)Γ(b + ix)Γ(c + ix) Γ(2ix) 2 Sm (x2 ; a, b, c)Sn (x2 ; a, b, c)dx 0 + Γ(a + b)Γ(a + c)Γ(b − a)Γ(c − a) Γ(−2a) 29 (2a)k (a + 1)k (a + b)k (a + c)k (−1)k (a)k (a − b + 1)k (a − c + 1)k k!