Forim@ge Books > Geometry And Topology > A Beckman-Quarles type theorem for finite desarguesian by Benz W.

A Beckman-Quarles type theorem for finite desarguesian by Benz W.

By Benz W.

Show description

Read or Download A Beckman-Quarles type theorem for finite desarguesian planes PDF

Best geometry and topology books

Grassmannians and Gauss Maps in Piecewise-Linear and Piecewise-Differential Topology

The publication explores the opportunity of extending the notions of "Grassmannian" and "Gauss map" to the PL class. they're special from "classifying area" and "classifying map" that are primarily homotopy-theoretic notions. The analogs of Grassmannian and Gauss map outlined comprise geometric and combinatorial info.

Geometry and Chronometry in Philosophical Perspective

Philosophy, technological know-how

Additional resources for A Beckman-Quarles type theorem for finite desarguesian planes

Example text

Rodrigues-type formula. ω(x; a, b, c, d)pn (x; a, b, c, d) = (−1)n n! δ δx n ω(x; a + 12 n, b + 12 n, c + 12 n, d + 12 n) . 10) Generating functions. ∞ 1 F1 a + ix − it a+c 1 F1 d − ix it b+d = 1 F1 a + ix − it a+d 1 F1 c − ix it b+c = (1 − t)1−a−b−c−d 3 F2 1 2 (a pn (x; a, b, c, d) n t . 11) ∞ pn (x; a, b, c, d) n t . 12) + b + c + d − 1), 12 (a + b + c + d), a + ix 4t − a + c, a + d (1 − t)2 ∞ = (a + b + c + d − 1)n p (x; a, b, c, d)tn . n n (a + c) (a + d) i n n n=0 References. [41], [43], [67], [68], [76], [205], [260], [274], [299], [301], [303].

X or equivalently d −x α−1 (α−1) e−x xα L(α) x Ln+1 (x). n (x) = (n + 1)e dx Rodrigues-type formula. e−x xα L(α) n (x) = 1 n! 8) n d dx e−x xn+α . 9) Generating functions. (1 − t)−α−1 exp et 0 F1 (1 − t)−γ 1 F1 − − xt α+1 γ xt α+1 t−1 ∞ xt t−1 n L(α) n (x)t . 10) n=0 ∞ (α) Ln (x) n t . 11) (γ)n n L(α) n (x)t , γ arbitrary. 12) = ∞ = Remarks. 1) of the Laguerre polynomials can also be written as : Ln(α) (x) = 1 n! n k=0 (−n)k (α + k + 1)n−k xk . k! In this way the Laguerre polynomials can be defined for all α.

3 Continuous dual Hahn Definition. Sn (x2 ; a, b, c) = 3 F2 (a + b)n (a + c)n −n, a + ix, a − ix 1 . 1) Orthogonality. If a,b and c are positive except possibly for a pair of complex conjugates with positive real parts, then ∞ 1 2π Γ(a + ix)Γ(b + ix)Γ(c + ix) Γ(2ix) 2 Sm (x2 ; a, b, c)Sn (x2 ; a, b, c)dx 0 = Γ(n + a + b)Γ(n + a + c)Γ(n + b + c)n! δmn . 2) If a < 0 and a + b, a + c are positive or a pair of complex conjugates with positive real parts, then ∞ 1 2π Γ(a + ix)Γ(b + ix)Γ(c + ix) Γ(2ix) 2 Sm (x2 ; a, b, c)Sn (x2 ; a, b, c)dx 0 + Γ(a + b)Γ(a + c)Γ(b − a)Γ(c − a) Γ(−2a) 29 (2a)k (a + 1)k (a + b)k (a + c)k (−1)k (a)k (a − b + 1)k (a − c + 1)k k!

Download PDF sample

Rated 4.92 of 5 – based on 24 votes